Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in

Advanced Linear Algebra (MA 409)
 Problem Sheet - 5

Bases and Dimension

1. Label the following statements as true or false.
(a) The zero vector space has no basis.
(b) Every vector space that is generated by a finite set has a basis.
(c) Every vector space has a finite basis.
(d) A vector space cannot have more than one basis.
(e) If a vector space has a finite basis, then the number of vectors in every basis is the same.
(f) The dimension of $P_{n}(F)$ is n.
(g) The dimension of $M_{m \times n}(F)$ is $m+n$.
(h) Suppose that V is a finite-dimensional vector space, that S_{1} is a linearly independent subset of V, and that S_{2} is a subset of V that generates V. Then S_{1} cannot contain more vectors than S_{2}.
(i) If S generates the vector space V, then every vector in V can be written as a linear combination of vectors in S in only one way.
(j) Every subspace of a finite-dimensional space is finite-dimensional.
(k) If V is a vector space having dimension n, then V has exactly one subspace with dimension 0 and exactly one subspace with dimension n.
(l) If V is a vector space having dimension n, and if S is a subset of V with n vectors, then S is linearly independent if and only if S spans V.
2. Determine which of the following sets are bases for \mathbb{R}^{3}.
(a) $\{(1,2,-1),(1,0,2),(2,1,1)\}$
(b) $\{(1,-3,-2),(-3,1,3),(-2,-10,-2)\}$
3. Determine which of the following sets are bases for $P_{2}(\mathbb{R})$.
(a) $\left\{-1-x+2 x^{2}, 2+x-2 x^{2}, 1-2 x+4 x^{2}\right\}$
(b) $\left\{1-2 x-2 x^{2},-2+3 x-x^{2}, 1-x+6 x^{2}\right\}$
(c) $\left\{1+2 x-x^{2}, 4-2 x+x^{2},-1+18 x-9 x^{2}\right\}$
4. Do the polynomials $x^{3}-2 x^{2}+1,4 x^{2}-x+3$, and $3 x-2$ generate $P_{3}(\mathbb{R})$? Justify your answer.
5. Is $\{(1,4,-6),(1,5,8),(2,1,1),(0,1,0)\}$ a linearly independent subset of \mathbb{R}^{3} ? Justify your answer.
6. Give three different bases for F^{2} and for $M_{2 \times 2}(F)$.
7. The vectors $u_{1}=(2,-3,1), u_{2}=(1,4,-2), u_{3}=(-8,12,-4), u_{4}=(1,37,-17)$, and $u_{5}=(-3,-5,8)$ generate \mathbb{R}^{3}. Find a subset of the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ that is a basis for \mathbb{R}^{3}.
8. Let W denote the subspace of \mathbb{R}^{5} consisting of all the vectors having coordinates that sum to zero. The vectors

$$
\begin{array}{ll}
u_{1}=(2,-3,4,-5,2), & u_{2}=(-6,9,-12,15,-6), \\
u_{3}=(3,-2,7,-9,1), & u_{4}=(2,-8,2,-2,6), \\
u_{5}=(-1,1,2,1,-3), & u_{6}=(0,-3,-18,9,12), \\
u_{7}=(1,0,-2,3,-2), & u_{8}=(2,-1,1,-9,7)
\end{array}
$$

generate W. Find a subset of the set $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ that is a basis for W.
9. The vectors $u_{1}=(1,1,1,1), u_{2}=(0,1,1,1), u_{3}=(0,0,1,1)$, and $u_{4}=(0,0,0,1)$ form a basis for F^{4}. Find the unique representation of an arbitrary vector $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ in F^{4} as a linear combination of u_{1}, u_{2}, u_{3}, and u_{4}.
10. In each part, use the Lagrange interpolation formula to construct the polynomial of smallest degree whose graph contains the following points.
(a) $(-2,-6),(-1,5),(1,3)$
(b) $(-4,24),(1,9),(3,3)$
(c) $(-2,3),(-1,-6),(1,0),(3,-2)$
(d) $(-3,-30),(-2,7),(0,15),(1,10)$
11. Let u and v be distinct vectors of a vector space V. Show that if $\{u, v\}$ is a basis for V and a and b are nonzero scalars, then both $\{u+v, a u\}$ and $\{a u, b v\}$ are also bases for V.
12. Let u, v, and w be distinct vectors of a vector space V. Show that if $\{u, v, w\}$ is a basis for V, then $\{u+v+w, v+w, w\}$ is also a basis for V.
13. The set of solutions to the system of linear equations

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
2 x_{1}-3 x_{2}+x_{3}=0
\end{array}
$$

is a subspace of \mathbb{R}^{3}. Find a basis for this subspace.
14. Find bases for the following subspaces of F^{5} :

$$
W_{1}=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in F^{5}: a_{1}-a_{3}-a_{4}=0\right\}
$$

and

$$
W_{2}=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in F^{5}: a_{2}=a_{3}=a_{4} \text { and } a_{1}+a_{5}=0\right\} .
$$

What are the dimensions of W_{1} and W_{2} ?
15. The set of all $n \times n$ matrices having trace equal to zero is a subspace W of $M_{n \times n}(F)$. Find a basis for W. What is the dimension of W ?
16. The set of all upper triangular $n \times n$ matrices is a subspace W of $M_{n \times n}(F)$. Find a basis for W. What is the dimension of W ?
17. The set of all skew-symmetric $n \times n$ matrices is a subspace W of $M_{n \times n}(F)$. Find a basis for W. What is the dimension of W ?
18. Find a basis for the vector space V consisting of all sequences $\left\{a_{n}\right\}$ in a field F that have only a finite number of nonzero terms a_{n}.
19. Let W_{1} and W_{2} be subspaces of a finite-dimensional vector space V. Determine necessary and sufficient conditions on W_{1} and W_{2} so that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)$.
20. Let $v_{1}, v_{2}, \ldots, v_{k}, v$ be vectors in a vector space V, and define $W_{1}=\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}\right)$, and $W_{2}=$ $\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{k}, v\right\}\right)$.
(a) Find necessary and sufficient conditions on V such that $\operatorname{dim}\left(W_{1}\right)=\operatorname{dim}\left(W_{2}\right)$.
(b) State and prove a relationship involving $\operatorname{dim}\left(W_{1}\right)$ and $\operatorname{dim}\left(W_{2}\right)$ in the case that $\operatorname{dim}\left(W_{1}\right) \neq$ $\operatorname{dim}\left(W_{2}\right)$.
21. Let $f(x)$ be a polynomial of degree n in $P_{n}(\mathbb{R})$. Prove that for any $g(x) \in P_{n}(\mathbb{R})$ there exist scalars $c_{0}, c_{1}, \ldots, c_{n}$ such that

$$
g(x)=c_{0} f(x)+c_{1} f^{\prime}(x)+c_{2} f^{\prime \prime}(x)+\cdots+c_{n} f^{(n)}(x)
$$

where $f^{(n)}(x)$ denotes the nth derivative of $f(x)$.
22. Let V and W be vector spaces over a field F. Let

$$
Z=\{(v, w): v \in V \text { and } w \in W\}
$$

Prove that Z is a vector space over F with the operations

$$
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right) \text { and } c\left(v_{1}, w_{1}\right)=\left(c v_{1}, c w_{1}\right) .
$$

If V and W are vector spaces over F of dimensions m and n, determine the dimension of Z.
23. For a fixed $a \in \mathbb{R}$, determine the dimension of the subspace of $P_{n}(\mathbb{R})$ defined by $\left\{f \in P_{n}(\mathbb{R}): f(a)=\right.$ $0\}$.
24. Let W_{1} denote the set of all polynomials $f(x)$ in $P(F)$ such that in the representation

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

we have $a_{i}=0$ whenever i is even. Likewise let W_{2} denote the set of all polynomials $g(x)$ in $P(F)$ such that in the representation

$$
g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}
$$

we have $b_{i}=0$ whenever i is odd. We proved that $P(F)=W_{1} \oplus W_{2}$. Determine the dimensions of the subspaces $W_{1} \cap P_{n}(F)$ and $W_{2} \cap P_{n}(F)$.
25. Let V be a finite-dimensional vector space over \mathbb{C} with dimension n. Prove that if V is now regarded as a vector space over \mathbb{R}, then $\operatorname{dim} V=2 n$.
26. (a) Prove that if W_{1} and W_{2} are finite-dimensional subspaces of a vector space V, then the subspace $W_{1}+W_{2}$ is finite-dimensional, and $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$. [Hint : Start with a basis $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ for $W_{1} \cap W_{2}$ and extend this set to a basis

$$
\left\{u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{m}\right\}
$$

for W_{1} and to a basis

$$
\left\{u_{1}, u_{2}, \ldots, u_{k}, w_{1}, w_{2}, \ldots, w_{p}\right\}
$$

for W_{2}.]
(b) Let W_{1} and W_{2} be finite-dimensional subspaces of a vector space V, and let $V=W_{1}+W_{2}$. Deduce that V is the direct sum of W_{1} and W_{2} if and only if $\operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$.
27. Let

$$
V=M_{2 \times 2}(F), W_{1}=\left\{\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right) \in V: a, b, c \in F\right\}
$$

and

$$
W_{2}=\left\{\left(\begin{array}{cc}
0 & a \\
-a & b
\end{array}\right) \in V: a, b \in F\right\} .
$$

Prove that W_{1} and W_{2} are subspaces of V, and find the dimensions of $W_{1}, W_{2}, W_{1}+W_{2}$, and $W_{1} \cap W_{2}$.
28. Let W_{1} and W_{2} be subspaces of a vector space V having dimensions m and n, respectively, where $m \geq n$.
(a) Prove that $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq n$.
(b) Prove that $\operatorname{dim}\left(W_{1}+W_{2}\right) \leq m+n$.
29. (a) Find an example of subspaces W_{1} and W_{2} of \mathbb{R}^{3} with dimensions m and n, where $m>n>0$, such that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=n$.
(b) Find an example of subspaces W_{1} and W_{2} of \mathbb{R}^{3} with dimensions m and n, where $m>n>0$, such that $\operatorname{dim}\left(W_{1}+W_{2}\right)=m+n$.
(c) Find an example of subspaces W_{1} and W_{2} of \mathbb{R}^{3} with dimensions m and n, where $m \geq n$, such that both $\operatorname{dim}\left(W_{1} \cap W_{2}\right)<n$ and $\operatorname{dim}\left(W_{1}+W_{2}\right)<m+n$.
30. (a) Let W_{1} and W_{2} be subspaces of a vector space V such that $V=W_{1} \oplus W_{2}$. If β_{1} and β_{2} are bases for W_{1} and W_{2}, respectively, show that $\beta_{1} \cap \beta_{2}=\varnothing$ and $\beta_{1} \cup \beta_{2}$ is a basis for V.
(b) Conversely, let β_{1} and β_{2} be disjoint bases for subspaces W_{1} and W_{2}, respectively, of a vector space V. Prove that if $\beta_{1} \cup \beta_{2}$ is a basis for V, then $V=W_{1} \oplus W_{2}$.
31. (a) Prove that if W_{1} is any subspace of a finite-dimensional vector space V, then there exists a subspace W_{2} of V such that $V=W_{1} \oplus W_{2}$.
(b) Let $V=\mathbb{R}^{2}$ and $W_{1}=\left\{\left(a_{1}, 0\right): a_{1} \in R\right\}$. Give examples of two different subspaces W_{2} and W_{2}^{\prime} such that $V=W_{1} \oplus W_{2}$ and $V=W_{1} \oplus W_{2}^{\prime}$.
32. Let W be a subspace of a finite-dimensional vector space V, and consider the basis $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ for W. Let $\left\{u_{1}, u_{2}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}\right\}$ be an extension of this basis to a basis for V.
(a) Prove that $\left\{u_{k+1}+W, u_{k+2}+W, \ldots, u_{n}+W\right\}$ is a basis for V / W.
(b) Derive a formula relating $\operatorname{dim}(V), \operatorname{dim}(W)$, and $\operatorname{dim}(V / W)$.
33. Let V be the set of all 2×2 matrices A with complex entries which satisfy $A_{11}+A_{22}=0$,
(a) Show that V is a vector space over the field of real numbers, with the usual operations of matrix addition and multiplication of a matrix by a scalar.
(b) Find a basis for this vector space.
(c) Let W be the set of all matrices A in V such that $A_{21}=-\overline{\mathrm{A}_{12}}$ (the bar denotes complex conjugation). Prove that W is a subspace of V and find a basis for W.
34. Let V be the set of real numbers. Regard V as a vector space over the field of rational numbers, with the usual operations. Prove that this vector space is not finite-dimensional.
35. Show that the set of all ordered triplets $\left(x_{1}, x_{2}, x_{3}\right)$ of real numbers such that

$$
\frac{x_{1}}{3}=\frac{x_{2}}{4}=\frac{x_{3}}{2}
$$

forms a real vector space, where the operations + and . are as in \mathbb{R}^{3}. Find a basis and hence the dimension of the vector space.
36. Let S be a subset of a vector space V and $A \subseteq S$. Then the following statements are equivalent :
(a) A is a minimal set with the property $S p(A) \supseteq S$;
(b) Every element of S can be expressed uniquely as a linear combination from A;
(c) $S p(A) \supseteq S$ and A is linearly independent;
(d) A is a maximal linearly independent subset of S.
37. Find a basis of the vector space $P(\Omega)$ (with the operations defined in the problem sheet "Vector Spaces"), when Ω is an arbitrary non-empty finite set.
38. Find all the bases of the following subspaces.
(a) For any non-empty subset A of $\Omega,\{\varnothing, A\}$ is a subspace.
(b) For any distinct non-empty subsets A and B of $\Omega,\{\varnothing, A, B, A \triangle B\}$ is another subspace.
39. If $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is a basis of a subspace S, show that
(a) $\left\{\alpha x_{1}, x_{2}, \ldots, x_{k}\right\}$ is a basis of S iff $\alpha \neq 0$.
(b) $\left\{x_{1}+\beta x_{2}, x_{2}, \ldots, x_{k}\right\}$ is a basis of S for any scalar β,
(c) $\left\{x_{1}+\beta x_{2}, \alpha x_{1}+x_{2}, x_{3}, \ldots, x_{k}\right\}$ is a basis of S iff $\alpha \beta \neq 1$.
40. If a subspace S of \mathbb{R}^{n} has a basis $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ such that all components of x_{1} are strictly positive, show that S has a basis B such that all components of each vector in B are strictly positive.
41. Let $A \subseteq V$. If one vector in $S p(A)$ can be expressed uniquely as a linear combination from A then show that A is linearly independent and, so, is a basis of $S p(A)$.
42. Show that a vector space V over F has a unique basis iff either " $d(V)=0$ " or " $d(V)=1$ and $|F|=2$ ".
43. Prove or disprove: if A, B and C are pair-wise disjoint subsets of V such that $A \cup B$ and $A \cup C$ are bases of V, then $\operatorname{Sp}(B)=\operatorname{Sp}(C)$.
44. Prove or disprove: if B is a basis of V and S is a subspace of V then B contains a basis of S.
45. Consider the basis

$$
B=\{(1,-1,0,0,0),(1,0,-1,0,0),(1,0,0,-1,0),(1,0,0,0,-1)\}
$$

of the subspace

$$
S=\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right): u_{1}+u_{2}+\ldots+u_{5}=0\right\}
$$

of \mathbb{R}^{5}. Using B, extend the linearly independent subset $\left\{x_{1}, x_{2}\right\}$ of S to a basis of S, where $x_{1}=$ $(1,0,0,2,-3)$ and $x_{2}=(1,1,0,4,-6)$.
46. Extend $A=\{(1,1, \ldots, 1)\}$ to a basis of \mathbb{R}^{n}.
47. Let $x_{1}, x_{2}, \ldots, x_{n}$ be fixed distinct real numbers.
(a) Show that $\ell_{1}(t), \ell_{2}(t), \ldots, \ell_{n}(t)$ form a basis of $P_{n}(\mathbb{R})$, where $\ell_{i}(t)=\prod_{j \neq i}\left(t-x_{j}\right)$. This basis leads to what is known as Lagrange's interpolation formula. If $f(t) \in P_{n}(\mathbb{R})$ is written as $\sum_{i=1}^{n} \alpha_{i} \ell_{i}(t)$, show that $\alpha_{i}=f\left(x_{i}\right) / \ell_{i}\left(x_{i}\right)$.
(b) Show that $\psi_{1}(t), \psi_{2}(t), \ldots, \psi_{n}(t)$ form a basis of $P_{n}(\mathbb{R})$, where $\psi_{1}(t)=1$ and $\psi_{i}(t)=\prod_{j=1}^{i-1}\left(t-x_{j}\right)$ for $i=2, \ldots, n$. This basis leads to what is known as Newton's divided difference formula.
48. Find a basis of each of the following subspaces of \mathbb{R}^{4}. Also express S_{3} in the form

$$
\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): \frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\frac{x_{3}}{a_{3}}=\frac{x_{4}}{a_{4}}\right\}
$$

(a) $S_{1}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}-2 x_{3}+x_{4}=0\right\}$,
(b) $S_{2}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}+x_{2}-x_{3}=0, x_{2}+2 x_{3}-x_{4}=0,2 x_{1}+3 x_{2}-x_{4}=0\right\}$,
(c) $S_{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}+x_{2}-x_{3}=0, x_{1}+x_{2}+2 x_{3}+x_{4}=0, x_{1}-3 x_{2}-x_{3}+2 x_{4}=0\right\}$.
49. Let $B=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be a basis of S and $x=\alpha_{1} x_{1}+\ldots+\alpha_{k} x_{k} \notin B$. Obtain a necessary and sufficient condition for $(B \cup\{x\})-\left\{x_{i}\right\}$ to be a basis of S.
50. Show that the subspaces of continuous functions and differentiable functions are not finite-dimensional.
51. Let F be a finite field with q elements and V an n-dimensional vector space over F.
(a) Show that $|V|=q^{n}$.
(b) Show (using the Theorem: The vectors $x_{1}, x_{2}, \ldots, x_{k}$ are linearly dependent iff x_{j} belongs to the span of $x_{1}, x_{2}, \ldots, x_{j-1}$ for some j such that $\leq j \leq k$) that the number of ordered k-tuples $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ such that $x_{1}, x_{2}, \ldots, x_{k}$ are linearly independent vectors in V, is

$$
\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \cdots\left(q^{n}-q^{k-1}\right)
$$

(c) Show that the number of distinct (unordered) bases of V is

$$
\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-1}\right) / n!
$$

(d) Show that the number of k-dimensional subspaces of V is

$$
\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)}
$$

This number is usually denoted by $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$.
(e) Show that the number of ℓ-dimensional subspaces of V containing a given k-dimensional subspace is $\quad\left[\begin{array}{l}n-k \\ \ell-k\end{array}\right]_{q}$.
52. If F is a subfield of a finite field G, prove that the number of elements in G is a power of the number of elements in F.
53. Let F be a subfield of a field G and let $x_{l}, x_{2}, \ldots, x_{k} \in F^{n}$. Show that $x_{l}, x_{2}, \ldots, x_{k}$ are linearly independent in F^{n} over F iff they are linearly independent in G^{n} over G.
[Hint : first consider the case $k=n$.]

